近年来,金属表面处理技术获得了迅速发展,已广泛应用于众多领域。随着金属加工业、铁路制造业、汽车行业的快速的提升,对生产各种金属制作的产品及铁路、汽车零部件产品的质量有了更加高的要求,通过长期的实践证明,一些简单、简易的解决方法,已经不能够满足使用环境的基础要求。只有采用标准的处理生产的基本工艺,才能使生产的产品满足质量发展要求。因此,选用低成本、低能耗、高品质的金属处理工艺,是企业保证防护质量和产品质量稳定与否的重要因素。
镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。依各种电镀需求还有不同的作用。举例如下:1.镀铜:打底用,增进电镀层附着能力,及抗蚀能力。2.镀镍:打底用或做外观,增进抗蚀能力及耐磨能力,(其中化学镍为现代工艺中耐磨能力超过镀铬)。3.镀金:改善导电接触阻抗,增进信号传输。4.镀钯镍:改善导电接触阻抗,增进信号传输,耐磨性高于金。
5.镀锡铅:增进焊接能力,快被其他替物取代(因含铅现大部分改为镀亮锡及雾锡)。
铬是一种微带天蓝色的银白色金属。它有很强的钝化性能,大气中很快钝化,显示出具有贵金属的性质,所以铁零件镀铬层是阴极镀层。铬层在大气中很稳定,能长期保持其光泽,在碱、硝酸、硫化物、碳酸盐以及有机酸等腐蚀介质中很稳定,但可溶于盐酸等氢卤酸和热的浓硫酸中。
铬层硬度高,耐磨性好,反光能力强,有较好的耐热性。在500OC 以下光泽和硬度均无明显变化;温度大于500OC开始氧化变色;大于
镀铜层呈粉红色,质柔软,拥有非常良好的延展性、导电性和导热性,易于抛光,经过适当的化学处理可得古铜色、铜绿色、黑色和本色等装饰色彩。镀铜易在空气中失去光泽,与二氧化碳或氯化物作用,表面生成一层碱式碳酸铜或氯化铜膜层,受到硫化物的作用会生成棕色或黑色硫化铜,因此,作为装饰性的镀铜层需在表面涂覆有机覆盖层。
镉是银白色有光泽的软质金属,其硬度比锡硬,比锌软,可塑性好,易于锻造和辗压。镉的化学性质与锌相似,但不溶解于碱液中,溶于硝酸和硝酸铵中,在稀硫酸和稀盐酸中溶解很慢。镉的蒸气和可溶性镉盐都有毒,必须严格防止镉的污染。因为镉污染后的危害很大,价格昂贵,所以一般会用镀锌层或合金镀层来取代镀镉层。目前国内生产中应用较多的镀镉溶液类型有:氨羧络合物镀镉、酸性硫酸盐镀镉和氰化物镀镉。除此以外还有焦磷酸盐镀镉、碱性三乙醇胺镀镉和HEDP镀镉等。
锡是一种银白色的金属,无毒,拥有非常良好的焊接和延展性等,大范围的应用电子、食品、汽车等工业。电镀锡溶液主要有碱性和酸性两大类,酸性体系中又分硫酸盐、甲基磺酸体系及氟硼酸体系镀锡等。实际生产中应用较多的是硫酸盐、甲基磺酸体系的酸性光亮镀锡工艺。下面介绍生产线上采用的硫酸盐镀锡。
镀锡具有下列特点和用途:(1)化学稳定性高,在空气中耐氧化,不易变色。(2)一般条件下,镀锡层对钢铁来说是阴极性镀层,因此只有在镀层无孔隙时才能够有效的保护钢铁基体;但在密闭条件下的有机酸介质中(例如罐头内部),锡是阳极性镀层,即使有孔隙仍具有电化学保护作用,而且溶解的锡对人体无害,故常作食品容器的保护层。(3)锡导电性好,易钎焊,所以常用以电子元器件引线、印刷电路板及低压器件的电镀。
锌易溶于酸,也能溶于碱,故称它为两性金属。锌在干燥的空气中几乎不发生明显的变化。在潮湿的空气中,锌表面会生成碱式碳酸锌膜。在含二氧化硫、硫化氢以及海洋性气氛中,锌的耐蚀性较差,尤其在
锌的标准电极电位为-0.76V,对钢铁基体来说,锌镀层属于阳极性镀层,它大多数都用在防止钢铁的腐蚀,其防护性能的优劣与镀层厚度关系甚大。
锌镀层经钝化处理、染色或涂覆护光剂后,能明显提高其防护性和装饰性。近年来,随着镀锌工艺的发展,高性能镀锌光亮剂的采用,镀锌已从单纯的防护目的进入防护-装饰性应用。
镀锌溶液有氰化物镀液和无氰镀液两类。氰化物镀液中分微氰、低氰、中氰、和高氰几类。无氰镀液有碱性锌酸盐镀液、铵盐镀液、硫酸盐镀液及无氨氯化物镀液等。氰化镀锌溶液均镀能力好,得到的镀层光滑细致,在生产中被长期采用。但由于氰化物剧毒,对环境污染严重,近年来已趋向于采用低氰、微氰、无氰镀锌溶液。
电镀单金属方面还有镀铅、镀铁、镀银、镀金等。电镀合金方面有:电镀铜基合金,电镀锌基合金,电镀镉基、铟基合金,电镀铅基、锡基合金,电镀镍基、钴基合金、电镀钯镍合金等。复合电镀方面有:镍基复合电镀,锌基复合电镀,银基复合电镀,金刚石镶嵌复合电镀。
积于工件表面。它包括四个过程: 1.电解(分解)在阴极反应最初为电解反应,生成氢气及氢氧根离子OH-,此反应造成阴极面形成一高碱性边界层,当阳离子与氢氧根作用成为不溶于
电泳漆膜具有涂层丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、耐腐、冲击性能、渗透性能明显优于其它涂装工艺。
钢的氧化处理钢的氧化处理是将钢件在空气—水蒸气或化学药物中加热到适当温度,使其表明产生一层蓝色(或黑色)的氧化膜,以改善钢的耐蚀性和外观,这种工艺称为氧化处理,又叫发蓝处理。氧化膜是一层致密而牢固的Fe3O4薄膜,只有0.5~1.5mm厚,对钢件的尺寸精度无影响。氧化处理后的钢件还要进行肥皂液浸渍处理和浸油处理,以提高氧化膜的防腐蚀能力和润滑性能。
金属表面着色,顾名思义就是给金属表面“涂”上颜色,改变其单一的、冰冷的金属色泽,代之以五颜六色,满足多种行业的不同需求。
给金属着色后一般都增加了防腐能力,有的还增加了抗磨能力。但表面彩色技术主要的应用还在装饰领域,即用来美化生活,美化社会。
钝化是使金属表面转化为不易被氧化的状态,而延缓金属的腐蚀速度的方法。另外,一种活性金属或合金,其中化学活性大大降低,而成为贵金属状态的现象,也叫钝化。
其钝化的机理可用薄膜理论来解释,即认为钝化是由于金属与氧化性质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、牢固地吸附在金属表面上的钝化膜。这层膜成独立相存在,通常是氧化金属的化合物。它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质接触,从而使金属基本停止溶解形成钝态达到防腐蚀的作用。如Fe→Fe++时标准电位为-0.44V,钝化后跃变到+0.5~1V,而显示出耐腐蚀的贵金属性能,这层薄膜就叫钝化膜。
金属的钝化也可能是自发的过程(如在金属的表面生成一层难溶解的化合物,即氧化物膜)。在工业上是用钝化剂(主要是氧化剂)对金属进行钝化处理,形成一层保护膜。
1、与传统的物理封闭法相比,钝化处理后具有绝对不增加工件厚度和改变颜色的特点、提高了产品的精密度和附加值,使操作更方便;
3、钝化促使金属表面形成的氧分子结构钝化膜、膜层致密、性能稳定,并且在空气中同时具有自行修复作用,因此与传统的涂防锈油的方法相比,钝化形成的钝化膜更稳定、更具耐蚀性。
工件经表面处理后,针对不同工件对外观和耐腐蚀的要求,选用合适的喷涂工艺及设备,同时应注意流平、干燥、冷却等工序的控制,否则会对产品质量产生不良影响。三种工艺各有利弊,在设备投资方面
电泳设备一次性投资大,而且关键设备主要依赖于进口;喷粉设备一次性投资最少,但由于粉末烘烧温度高,所以设备(能耗)运行费用高。
一般情况下,喷漆工艺能获得较好的外观质量。喷漆涂层具有较好的光泽、色泽及耐候性,通常用于汽车外涂层、摩托车油箱等外观要求较高的场合。对于防腐要求较高的场合,如摩托车车架、放在厨房中的冰箱等一般采用喷粉工艺。电泳工艺一般运用于耐盐雾试验、耐冲击性等要求比较高的场合并且充当底漆的作用。当然像汽车雨刮器、高档门锁等只需一道电泳漆就能满足要求。有时对一种产品三种工艺都能适用,这由各方面的综合因素而定。
粉末静电喷涂,利用高压静电发生器发出的高压直流电,接至喷枪尖,而工件通过输送链接地,当工件进入喷粉房和喷枪尖端接近时,就产生电晕放电现象,喷枪和 工件之间形成一个电场,粉末和压缩空气的混合物从喷枪口喷射出来,经过电晕放电就带上了负电荷,带负电荷的粉末微粒在静电力和压缩气流的作用下到达工件表 面,在粉末微粒的其它部分的负电荷与工件之间具有静电吸引力,使粉末微粒均匀地吸附在工件表面上,一般粉末微粒的比电阻在102-103Ω为宜,带电量一般在Q=107库∕克的程度上,喷涂操作时使用的电压一般为50-80KV,放电量为100μA以下,喷枪尖端与工件的距离10-20㎝为宜。冷喷时,工件涂层厚度一般为50-100微米,热喷时,涂膜厚度可达500微米。在工件凹陷处,需降低电压进行喷涂。
烤漆分为两大类,一类低温烤漆固化温度为140°-180°,另外一类就称为高温烤漆,其固化温度为280°-400°。
喷漆时,外部空气经过初级过滤网过滤后由风机送到房顶,再经过顶部过滤网二次过滤净化后进入房内。房内空气采用全降式,以0.2-0.3m/s的速度向下流动,使喷漆后的漆雾微粒不能在空气中停留,而直接通过底部出风口被排出房外。这样不断地循环转换,使喷漆时房内空气清洁度达98%以上,且送入的空气具有一定的压力,可在车的四周形成一恒定的气流以去除过量的油漆,从而最大限度地保证喷漆的质量。
烤漆时,将风门调至烤漆位置,热风循环,烤房内温度迅速升高到预定干燥温度(55℃—60℃)。风机将外部新鲜空气进行初过滤后,与热能转换器发生热交换后送至烤漆房顶部的气室,再经过第二次过滤净化,热风经过风门的内循环作用,除吸进少量新鲜空气外,绝大部分热空气又被继续加热利用,使得烤漆房内温度逐步升高。当温度达到设定的温度时,燃烧器自动停止;当温度下降到设置温度时,风机和燃烧器又自动开启,使烤漆房内温度保持相对恒定。最后当烤漆时间达到设定的时间时,烤漆房自动关机,烤漆结束。
高温烤漆又名特氟龙(telon)英文全称为Polytetrafluoroetylene,简称Teflon、PTFE、F4等。特氟龙高性能特种涂料是以聚四氟乙烯为基体树脂的氟涂料,英文名称为Teflon,因为发音的缘故,通常又被称 之为铁氟龙、铁富龙、特富龙、特氟隆等等(皆为Teflon 的译音)。特氟龙(铁氟龙)涂料是一种独一无二的高性能涂料,结合了耐热性、化学惰性和优异的绝缘稳定性及低摩擦性,具有其他涂料无法抗衡的综合优势,它应用的灵活性使得它能用于几乎所有形状和大小的产品上。
1、不粘性:几乎所有物质都不与特氟龙涂膜粘合。很薄的膜也显示出很好的不粘附性能。
2、耐热性:特氟龙涂膜具有优良的耐热和耐低温特性。短时间可耐高温到300℃,一般在240℃~260℃之间可连续使用,具有显著的热稳定性,它可以在冷冻温度下工作而不脆化,在高温下不融化。
3、滑动性:特氟龙涂膜有较低的摩擦系数。负载滑动时摩擦系数产生变化,但数值仅在0.05-0.15之间。
4、抗湿性:特氟龙涂膜表面不沾水和油质,生产操作时也不易沾溶液,如粘有少量污垢,简单擦拭即可清除。停机时间短,节省工时并能提高工作效率。
5、耐磨损性:在高负载下,具有优良的耐磨性能。在一定的负载下,具备耐磨损和不粘附的双重优点。
6、耐腐蚀性:特氟龙几乎不受药品侵蚀,可以保护零件免于遭受任何种类的化学腐蚀。2.8磷化
磷化(phosphorization)是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。磷化所形成的磷化膜是一层稳定的不导电的隔离层,使金属表面由优良导体变为不良导体,抑制了微电池形成,有效地阻止涂层腐蚀。磷化常用的方法按处理温度分为高温磷化(70~90℃ ),中温磷化(50~70℃ )和常温磷化(20~30℃ )。磷化膜一般是黑色的。
①防护用磷化膜用于钢铁件耐蚀防护处理。磷化膜类型可用锌系、锰系。膜单位面积质量为10-40 g/m2。磷化后涂防锈油、防锈脂、防锈蜡等。
增加漆膜与钢铁工件附着力及防护性。磷化膜类型可用锌系或锌钙系。磷化膜单位面积质量为0.2-1.0 g/m2(用于较大形变钢铁件油漆底层);1-5 g/m2(用于一般钢铁件油漆底层);5-10 g/m2(用于不发生形变钢铁件油漆底层)。
钢丝、焊接钢管拉拔单位面积上膜重1-10 g/m2;精密钢管拉拔单位面积上膜重4-10 g/m2;钢铁件冷挤压成型单位面积上膜重大于10 g/m2。
磷化膜可起减摩作用。一般用锰系磷化,也可用锌系磷化。对于有较小动配合间隙工件,磷化膜质量为1-3 g/m2;对有较大动配合间隙工件(减速箱齿轮),磷化膜质量为5-20 g/m2。
所谓表面硬化法是指通过适当的方法使零件的表层硬化而零件的心部仍然具有强韧性的处理。通过这种处理,可以改善零件的耐磨性以及耐疲劳性,而由于零件的心部仍然具有良好的韧性和强度,因此对冲击载荷有良好的抵抗作用。常用的表面硬化处理方法主要有渗碳、氮化、硬质阳极氧化、表面淬火以及渗金属等。
钢的渗碳就是含碳量较低的钢制零件在渗碳介质中加热或者保温,使碳原子渗入表面,获得一定的表面含碳量,在淬火之后,含碳量高的表层硬度很高,而含碳量低的心部硬度低仍具有良好的韧性。目的是使零件获得高的表面硬度、耐磨性以及高的接触疲劳强度和弯曲疲劳强度。主要用于承受磨损、交变接触应力或者弯曲应力和冲击载荷的零件,如轴、齿轮、凸轮轴等,这些零件要求表面有很高的硬度而心部要有足够的强度和韧性。
氮化是指把合金钢(一般含有Al、Cr、Mo)在无水氨气(NH3)流中在500℃—570℃左右长时间加热,使钢的表面形成一层硬度很高又耐腐蚀的氮化物(主要为Fe2N、Fe3N、Fe4N)。一般有气体渗氮、液体渗氮和辉光离子渗氮。
铝的阳极氧化是以铝或铝合金作阳极,以铅板作阴极在电解液中电解,使其表面生成氧化膜层。经过阳极氧化,铝表面能生成厚度为几个至几百微米的氧化膜。这层氧化膜的表面是多孔蜂窝状的,比起铝合金的天然氧化膜,其耐蚀性、耐磨性和装饰性都有明显的改善和提高。
表面淬火是指将工件表面一定深度范围内迅速加热到淬火温度,然后迅速冷却,在一定深度范围内达到淬火目的的热处理工艺。目的是在工件表面一定深度范围内获得马氏体组织,而心部仍保持淬火前的组织状态(调质或者正火状态),从而使表面硬而耐磨,而心部又有足够的塑性和韧性。主要用于中碳调质钢和球墨铸铁制的机器零件。
电镀时,镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。
在盛有电镀液的镀槽中,经过清理和特殊预处理的待镀件作为阴极,用镀覆金属制成阳极,两极分别与直流电源的负极和正极联接。电镀液由含有镀覆金属的化合物、导电的盐类、缓冲剂、pH调节剂和添加剂等的水溶液组成。通电后,电镀液中的金属离子,在电位差的作用下移动到阴极上形成镀层。阳极的金属形成金属离子进入电镀液,以保持被镀覆的金属离子的浓度。在有些情况下,如镀铬,是采用铅、铅锑合金制成的不溶性阳极,它只起传递电子、导通电流的作用。电解液中的铬离子浓度,需依靠定期地向镀液中加入铬化合物来维持。电镀时,阳极材料的质量、电镀液的成分、温度、电流密度、通电时间、搅拌强度、析出的杂质、电源波形等都会影响镀层的质量,需要适时进行控制。
除蜡 → 热浸除油 → 阴极 → 阳极 → 电解除油 → 弱酸浸蚀 → 预镀碱铜 → 酸性光亮铜(选择)→ 光亮镍 → 镀铬或其它
除蜡 → 热浸除油 → 阴极 → 阳极 → 电解除油 → 弱酸浸蚀 → 半光亮镍 → 高硫镍 → 光亮镍 → 镍封(选择)→ 镀铬
除蜡 → 热浸除油 → 阴极电解除油 → 浸酸 → 碱性光亮铜 → 焦磷酸铜(选择性)→ 酸性光亮铜(选择性)→ 光亮镍 →镀铬
1) 电化学除油→热水洗→冷水洗→浸酸活化(1ml/L HCL、10ml/L H2SO4,室温,半分钟;适用于自动线上不锈钢镀铬,不宜镀铜或镍)→水洗→镀铬。
3) 化学除油→清洗→阳极电化学除油(0.5A/dm2)→清洗→浸酸活化(1ml/L HCL、10ml/L H2SO4,室温,45S)→清洗→镀铬注:镀铬时,应先用是正常电镀时电流密度的1.5~2倍镀3~5分钟,然后再正常电流密度电镀,要尽量缩短各工序之间的过渡引起的停留时
化学镀铜(Eletcroless Plating Copper)通常也叫沉铜或孔化(PTH)是一种自身催化性氧化还原反应。首先用活化剂处理,使绝缘基材表面吸附上一层活性的粒子通常用的是金属钯粒子(钯是一种十分昂贵的金属,价格高且一直在上升,为降低成本现在国外有实用胶体铜工艺在运行),铜离子首先在这些活性的金属钯粒子上被还原,而这些被还原的金属铜晶核本身又成为铜离子的催化层,使铜的还原反应继续在这些新的铜晶核表面上进行。化学镀铜在PCB制造业中得到了广泛的应用,目前最多的是用化学镀铜进行PCB的孔金属化。PCB孔金属化工艺流程如下:
钻孔→磨板去毛刺→上板→整孔清洁处理→双水洗→微蚀化学粗化→双水洗→预浸处理→胶体钯活化处理→双水洗→解胶处理(加速)→双水洗→沉铜→双水洗→下板→上板→浸酸→一次铜→水洗→下板→烘干
检验——除油——水洗——酸洗——水洗——滚光——水洗——镀铜——水洗——镀锡——水洗——钝化——水洗 ——甩干——检验
1、控制好镀液工作条件,勤观察,注意温度变化,液位变化。仔细操作,如实填写操作记录。根据化验结果补加药水,校正电镀液。
热浸镀锌是由古老的热浸镀锡发展而来的一种应用最广泛和最有效的金属防锈方法,自应用于工业生产以来已有近170年的发展历史,是一种防止钢铁大气腐蚀的有效方法。由于热镀锌产品具有良好的耐蚀能力、美好的外观、有利于后续加工、可降低成本和减少环境污染等优点,因而深受广大用户的欢迎。
热浸镀锌是将被镀金属(基体)材料经预处理后,浸入液态金属锌中,从而在金属表面镀覆上一层薄薄的具有防护性的锌镀层,以达到提高材料抗腐蚀能力、改善材料性能的一种工艺方法。此工艺特点是基体金属与镀层金属间形成冶金结合的合金层。被镀金属一般为普碳钢、合金钢和铸铁。此外,用于热镀的低熔点金属还有铝、铅、锡等有色金属及其合金。
一般认为,热浸镀锌镀层是按下列步骤形成的:首先,固体铁溶解在熔融锌中;其次,铁和锌形成铁-锌化合物;最后,在铁-锌合金层表面生成纯锌层。
该过程中的物理化学反应可以分为以下几个阶段:①锌原子通过钢铁表面扩散到钢铁材料的亚表面,形成锌铁固溶体;②以此固溶体为界,铁原子和锌原子进行反方向的扩散,锌原子继续向钢铁内表面扩散,使固溶体层增厚,同时固溶体中的铁原子溶解于工件表面吸附在熔锌中,铁和锌生成Fe-Zn合金层;③当工件从锌锅中提出时,锅中的纯锌熔融体粘附在Fe-Zn合金层表面,冷却后形成纯锌结晶层。
预镀件--脱脂--水洗--酸洗--水洗--挤干--涂水溶剂--烘干--镀锌--冷却--矫直--涂油--打包。
由Zn—Fe状态图可以看出,当镀锌温度在450~670℃范围内时,所产生的相层,由铁开始其顺序为:a固溶体,a+r的共晶混合物,r 相,r+δ1的包晶混合物,δ1相,δ1相+ξ相的包晶混合物,ξ相和η相。
在热镀锌生产过程中,实际获得的镀层不一定完全含有上述8种相层。研究结果表明,当镀件在锌液中浸没时间很短时,根本不会形成a固溶体,而a+r共晶、r+δ1包晶和δ1+ξ包晶分别在623℃、672℃和530℃时才能形成。所以,镀锌温度在450~470℃范围时,不会形成上述4种相层,只可能形成r相、δ1相、ξ相及η相等4种相层。当浸锌时间极短,如5s左右时,r相也不会形成,η相几乎由纯锌组成,所以此相又被称为纯锌层。此时,铁锌合金层中就只存在δ1相和ξ相。
以电化学方法使金属离子还原为金属的过程称为金属电沉积。如果在电沉积过程中,能在金属和非金属制品表面形成符合要求的平滑致密的金属覆盖层,则称为电镀。
锌的电沉积是指在直流电流作用下,电解液中的锌离子还原并沉积在工件表面上形成锌镀层的过程。电镀时,溶液中的锌离子在阴极
还原形成镀层,同时,阳极进行氧化反应,金属锌变成锌离子。镀层金属从离子态到结晶态需经过以下几个步骤。
锌离子在阴极还原时消耗的是阴极附近的离子,溶液中的锌离子通过电迁移、扩散和对流等形式进行补充,以保持溶液中锌离子的均衡。
在还原前,迁移到电极/溶液界面双电层处的锌离子在还原反应前首先发生均相前置反应,如单位溶液中金属离子水化程度的降低和重排,铬盐溶液中铬离子的配体发生交换或配位数下降。
这是金属离子得到电子的还原过程,但电荷转移不是一步完成的,必须经过中间活性离子状态。这种活性离子通常被称为吸附原子,是保留着部分水化分子和部分电荷的粒子。随后吸附原子失去剩余的水化分子并进入金属晶格,完成电荷转移的全过程。
吸附原子通过表面扩散到达生长点进入晶格生长,或通过吸附原子形成晶核长大成晶体。
电镀锌的基本工艺流程如下:预镀件一除油一侵蚀一抛光一镀锌一除氢一钝化/染色。
电镀锌可以形成均匀、致密的镀锌层,镀层的质量均匀性比热镀锌好,但镀层没有热镀锌镀层厚,所以耐蚀性也不如热镀锌制品。 尽管电镀锌应用广泛,特别是常规零部件的电镀锌防腐,但是电镀锌的局限性也显而易见。首先是“三废”的处理问题。由于电镀过程会产生大量的废水、废气和废渣,其中含有重金属铬、氢氰根等剧毒物质,会对环境造成严重威胁。目前,对电镀企业,环保是一道很难逾越的关卡。另外,氢脆问题也不可小视。工件在侵蚀、阴极电解除油和电解过程中都可能在镀层和基体金属的晶格中渗氢,而氢的渗入往往将造成材料脆性增加,从而导致在某些条件下发生突然断裂。
工件前处理(除油→热水洗→除锈→冷水洗→磷化→热水洗→钝化)→阳极电泳→工件后处理(清水洗→烘干)。
1、除油。溶液一般为热碱性化学除油液,温度为60℃(蒸汽加热),时间为20min左右。
7、阳极电泳。电解液成分:H08-1黑色电泳漆,固体分质量分数9%~12%,蒸馏水质量分数88%~91%。电压:(70±10)V;时间:2~2.5min;漆液温度:15~35℃;漆液PH 值:8~8.5。注意工件出入槽要断电。电泳过程中电流随漆膜增厚会逐步下降。
氧化处理过程中溶液中的氧化剂含量越高,生成氧化膜速度也越快,而且膜层致密、牢固。溶液中碱的浓度适当增大,获得氧化膜的厚度增大,碱含量过低,氧化膜薄而脆弱。溶液的温度适当升高,可以提高氧化致密度。工件含碳量越高,越容易氧化,氧化时间越短。氧化处理时间主要根据钢件的含碳量和工件氧化要求来调整。氧化处理工艺不影响零件的精度,常用于仪器、仪表、工具、枪械及某些机械零件的表面,使其达到耐磨、耐蚀以及防护与装饰的目的。
金属表面着色,顾名思义就是给金属表面“涂”上颜色,改变其单一的、冰冷的金属色泽,代之以五颜六色,满足不一样的行业的不同需求。
给金属着色后一般都增加了防腐能力,有的还增加了抗磨能力。但表面彩色技术主要的应用还在装饰领域,即用来美化生活,美化社会。
用铬酸盐溶液与金属作用在其表面生成三价或六价铬化层的过程,称为钝化,亦名铬化。多用于铝、镁及其合金的处理,对钢铁也能形成铬化层,但很少单独使用,常和磷化配套使用,以封闭磷化层的孔隙,使磷化层中的钢铁钝化,以抑制残余磷化加速剂的腐蚀
作用,进一步增加防护能力。钝化时一般用重铬酸钾溶液(2~4克/升,有时也加入1~2克磷酸),在80-90摄氏度浸啧2-3分钟取出,水洗即可 。
不锈钢工件经切削加工后表面上通常会残留铁屑、钢末及冷却乳液等污物,会使不锈钢表面出现污斑与生锈,因此应进行脱脂除油,再用硝酸清洗,既去除了铁屑钢末,又进行了钝化。
由于油脂是氢的来源,在没有清除油脂的焊缝中会形成气孔,而低熔点金属污染(如富锌漆)焊接后会造成开裂,所以不锈钢焊前必须将坡口及两侧20mm内的表面清理干净,油污可用丙酮擦洗,油漆锈迹应先用砂布或不锈钢丝刷清除,再用丙酮擦净。
不锈钢设备制造无论采用何种焊接技术,焊后均要清洗,所有焊渣、飞溅物、污点与氧化色等均要除掉,清除方法包括机械清洗与化学清洗。机械清洗有打磨、抛光与喷砂喷丸等,应避免使用碳钢刷子,以防表面生锈。为取得最好的抗腐蚀性能,可将其浸泡在HNO3和HF的混液中,或采用酸洗钝化膏。实际上常4锎1械清洗与化学清洗结合起来应用。
经锻铸等热加工后的不锈钢工件,表面往往有一层氧化皮、润滑剂或氧化物污染,污染物包括石墨、二硫化钼与二氧化碳等。应通过喷丸处理、盐浴处理以及多道酸洗处理。如美国不锈钢涡轮机叶片处理工艺为:
许多大型化工、化纤、化肥等装置的不锈钢设备与管道在投产开工前要求进行酸洗钝化。虽然设备在制造厂已进行过酸洗,去除了焊渣与氧化皮,但在存放、运输、安装过程中又难免造成油脂、泥砂、铁锈等的污染,为确保装置与设备试车产品(尤其是化工中间体及精制品)的质量能够达到要求,保证一次试车成功,必须进行酸洗钝化。如H2O2生产装置不锈钢设备与管道,投产前必须进行清洗,否则若有污物重金属离子会使催化剂中毒。另外,如金属表面有油脂与游离铁离子等会造成H2O2的分解,剧烈放出大量热,引发着火,甚至爆炸。同样对氧气管道来说存在微量油污与金属微粒也可能产生火花而发生严重后果。
打磨→擦拭→静电除尘→喷底漆→底漆流平→烘干→喷色漆→色漆流平→喷清漆→清漆流平→烘干→冷却
静电除尘原理:通过静电发生器,使空气离子化消除工件上的电荷,从而导致附着在工件上的灰尘处于漂浮状态,在利用流动的空气带走灰尘,而起到了静电除尘的 作用。静电除尘枪在正常工作状态下,会发出呈蓝紫色放射状火焰,工作前,须检验静电发生器的接地状况。
擦拭:作业人员使用带有化学药品的擦拭布,带走工件上的油污或油脂。化学药品具有局限性,根据工件的不同材质和存有的油脂,选择但方向擦拭。在一些车体涂装线中,常使用自动擦拭装置,如鸵鸟毛擦拭机。
喷漆:使用的油漆通过输漆系统,送往油漆喷枪,被压至枪头,当枪针回缩时,油漆自枪眼中流出,在压缩空气的吹动作用下,呈雾状喷至工件表面,形成漆膜。喷 枪离工件表面的距离,对漆膜的质量有着明显的影响,当距离过近时,油漆雾化效果差,色差严重,易出现堆积;当距离过远时,漆膜易发毛发花,甚至会产生颗 粒。雾化压力不当,也会影响漆膜质量。
烘烤:利用热空气或辐射热源,对工件表面的漆膜进行烘烤,加快漆膜中的溶剂挥发,或加快漆膜中树脂组分间的反应,使油漆膜干燥固化。对于不同材质的工件, 烘烤的温度有所不同,如工程塑料工件的烘烤温度一般为60-80℃,钢铁工件的烘烤温度为150℃左右,PVC涂胶的烘烤温度为120℃左右。温度过高, 不仅会引起非金属工件的变形,对漆膜的质量也会产生不良影响。工件表面的漆膜需要一定的烘烤时间,方能完全固化,但是,时间过长,则会降低漆膜表面的硬 度,增加脆性,或引起漆膜发黄。
前处理:工艺同喷漆工艺中的前处理,工件需要充分冷却到35℃以下才能保证喷粉后工件的理化性能和外观品质。
喷涂:粉末涂料先加入到新粉桶,压缩空气通过新粉桶底部的流化板上的微孔使粉末预流化,再经过粉泵输送到旋转筛。旋转筛分离出粒径过大的粉末粒子 (100μm以上),剩余粉末下落到供粉桶。供粉桶将粉末流化到规定程度后通过粉泵和送粉管供给喷枪喷涂工件。喷枪喷出的粉末除一部分吸附到工件表面上 (一般为50%~70%)外,其余部分自然沉降。沉降过程中的粉末一部分被喷粉棚侧壁的旋风回收器收集,
利用离心分离原理使粒径较大的粉末粒子(12μm 以上)分离出来并送回旋转筛重新利用。12μm以下的粉末粒子被送到滤芯回收器收集斗内,这部分粉末定期清理装箱。沉降到喷粉棚底部的粉末收集后通过粉泵进入旋转筛重新利用。一般地,总体粉末利用率平均达到95%。
烘烤固化:固化过程是环氧树脂中的环氧基、聚酯树脂中的羧基与固化剂中的胺基发生缩聚、加成反应交联成大分子网状体,同时释放出小分子气体(副产物)。分为熔融、流平、胶化和固化4个阶段。一般地,采用的粉末固化工艺为180℃,烘15min,属正常固化。
涂装前处理与涂布、干燥为涂装工艺三大主要工序,其中涂装前处理是基础工序,它对整个涂层质量、涂层使用寿命、涂层外观等均有着重要影响
主要有矿物油、润滑脂、动、植物油脂,比如操作与搬运过程中用手摸等油脂使绝大多数涂料的附着力严重下降,并影响它们的干燥,也使涂层的硬度和光泽度降低。
以碱溶液除去工件上之油污,主要的碱为NaOH,NaHCO3等等混合而成;可以买到专门的脱脂粉,然后配制成水溶液;肥皂的皂化作用;
以清水漂洗,以免前一工序中的溶液污染到下一工序。清水必须是活的(流动的)。
黄锈能促进腐蚀产物在涂层下蔓延,使涂层失去屏蔽性和不透湿性。在高温高湿条件下能导致涂层和金属的早期损坏,松散的黄锈,附着力差,能与涂层一起脱落。
除锈的方法很多,如碱液法,酸液法,机械法,电解法等,常见的是碱液法。以化学溶液除去工件表面的氧化皮,锈迹等,一般是用硫酸,也有用草酸。还可辅以超声波清洗。
表面调整的简称:以酸(或碱)溶液除去除锈工序中表面多余的碱(或酸),调整酸碱度尽可能到中性,即PH值=7;
磷化是涂装前处理的中心环节,用磷酸式锰、锌、镉的正磷酸盐溶液处理金属工件,使在工件表面上形成一层不溶性磷酸盐保护膜,所形成的磷化膜系具有细微小孔的致密结构,增大了工件表面积,可以增大涂层接触面积,使磷化膜与涂层之间产生有利的相互渗透,大大提高有机涂层对工件的附着力 。
以上前处理过程基本都是在水槽中进行的。并且每一工序有时间的规定。烘干水分,准备涂漆;
磷化工艺的早期应用是防锈,钢铁件经磷化处理形成一层磷化膜,起到防锈作用。经过磷化防锈处理的工件防锈期可达几个月甚至几年(对涂油工件而言),广泛用于工序间、运输、包装贮存及使用过程中的防锈,防锈磷化主要有铁系磷化、锌系磷化、锰系磷化三大品种。
铁系磷化的主体槽液成分是磷酸亚铁溶液,不含氧化类促进剂,并且有高游离酸度。这种铁系磷化处理温度高于95℃,处理时间长达
30min以上,磷化膜重大于10g/m2,并且有除锈和磷化双重功能。这种高温铁系磷化由于磷化速度太慢,现在应用很少。
锰系磷化用作防锈磷化具有最佳性能,磷化膜微观结构呈颗粒密堆集状,是应用最为广泛的防锈磷化。加与不加促进剂均可,如果加入硝酸盐或硝基胍促进剂可加快磷化成膜速度。通常处理温度80~100℃,处理时间10~20min,膜重在7.5克/m2以上。
锌系磷化也是广泛应用的一种防锈磷化,通常采用硝酸盐作为促进剂,处理温度80~90℃,处理时间10~15min,磷化膜重大于
除油除锈——水清洗——表面调整活化——磷化——水清洗——铬酸盐处理——烘干——涂油脂或染色处理
通过强碱强酸处理过的工件会导致磷化膜粗化现象,采用表面调整活化可细化晶粒。锌系磷化可采用草酸、胶体钛表调。锰系磷化可采用不溶性磷酸锰悬浮液活化。铁系磷化一般不需要调整活化处理。磷化后的工件经铬酸盐封闭可大幅度提高防锈性,如再经过涂油或染色处理可将防锈性提高几位甚至几十倍。
对于发动机活塞环、齿轮、制冷压缩机一类工件,它不仅承受一次载荷,而且还有运动摩擦,要求工件能减摩、耐摩。锰系磷化膜具有
较高的硬度和热稳定性,能耐磨损,磷化膜具有较好的减摩润滑作用。因此,广泛应用于活塞环,轴承支座,压缩机等零部件。这类耐磨减摩磷化处理温度70~100℃,处理时间10~20min,磷化膜重大于7.5g/m2。
在冷加工行业如:接管、拉丝、挤压、深拉延等工序,要求磷化膜提供减摩润滑性能,一般都会采用锌系磷化,一是锌系磷化膜皂化后形成润滑性很好的硬脂酸锌层,二是锌系磷化操作温度比较低,可在40、60或90℃条件下进行磷化处理,磷化时间4~10min,有时甚至几十秒钟即可,磷化膜重量要求≥3g/m2便可。
耐磨减摩磷化减摩润滑磷化(冷加工)→除油除锈→水清洗→锰系磷化锌系磷化 →水清洗→干燥→皂化(硬脂酸钠)→涂润滑油脂干燥3. 漆前磷化工艺
涂装底漆前的磷化处理,将提高漆膜与基体金属的附着力,提高整个涂层系统的耐腐蚀能力;提供工序间保护以免形成二次生锈。因此漆前磷化的首要问题是磷化膜必须与底漆有优良的配套性,而磷化膜本身的防锈性是次要的,磷化膜细致密实、膜薄。当磷化膜粗厚时,会对漆膜的综合性能产生负效应。磷化体系与工艺的选定主要由:工件材质、油锈程度、几何形状;磷化与涂漆的时间间隔;底漆品种和施工方式以及相关场地设备条件决定。
一般来说,低碳钢较高碳钢容易进行磷化处理,磷化成膜性能好些。对于有锈(氧化皮)工件必须经过酸洗工序,而酸洗后的工件将给磷化带来很多麻烦,如工序间生锈泛黄,残留酸液的清除,磷化膜出现粗化等。酸洗后的工件在进行锌系、锌锰系磷化前一般要进行表面调整处理。
在间歇式的生产场合,由于受条件限制,磷化工件必须存放一段时间后才能涂漆,因此要求磷化膜本身具有较好的防锈性。如果存放期在10天以上,一般应采用中温磷化,如中温锌系、中温锌锰系、中温锌钙系等,磷化膜的厚度最好应在2.0 ~4.5g/m2之间。磷化后的工件应立即烘干,不宜自然凉干,以免在夹缝、焊接处形成锈蚀。如果存放期只有3~5天,可用低温锌系、轻铁系磷化,烘干效果会好于自然凉干。
Na2CO3等促进剂组成)中然后放入渗碳容器里加热到900℃—930℃保温一定时间。液体渗碳是把工件浸入以(NaCN)为主(含NaCl、
的熔融盐浴里,分解所生成的C和N渗入工件中。气体渗碳是把零件放入通有CH4和CO的容器里加热使碳原子渗入工件表面。
渗碳层的深度可以达到几个毫米,其深度随渗碳时间的增加而增加,随渗碳温度的升高而加深,但是渗碳速度随时间的延长而减慢。对不要渗碳的部位一般采用镀铜保护或者预留加工余量、渗碳后把该处切掉的方法进行防护。
渗碳后必须进行淬火和低温回火处理以得到零件所需要的硬度(可达HRC55—65),注重高硬度时在150℃左右回火,而为了保持零件的尺寸精度,防止时效变形时在180℃—200℃左右回火。
最后必须要提及一点是,我们经常提到的渗碳层深度是指淬火后的有效硬化层深度,国标GB9450—88上规定为从零件表面到维氏硬度值为550HV的距离,实际碳在零件中扩散达到的距离比这个要大得多。
氮化时合金钢的含碳量一般在0.2%—0.5%,主要由零件心部的机械性能来决定含碳量,含碳量高时阻碍N的扩散,从而减少氮化层的厚度,而含碳量少时,零件截面上的硬度梯度变化就会大,从而造成氮化层容易剥离。Al的作用是增加渗氮后钢的表面硬度,Cr可以增加氮化层的厚度,Mo可以防止在500℃—570℃长时间加热造成的回火脆性,Cr、Mo对材质的改良也很重要。历史最久国际上普遍采用的渗氮钢是
一般的氮化零件的工艺流程为锻造—退火—粗加工—调质—精加工—氮化。不需要氮化的部位可以镀Ni或者镀Sn或者镀Pb20%+Sn80%。
氮化处理前先对零件进行调质处理,使其拥有非常良好的塑性和韧性,氮化处理后不再实施淬火、回火,并且氮化处理本身的温度就比较低,所以工件的变形小。
氮化处理后工件表面的硬度可以达到HRC65—72,比渗碳处理后的硬度更高更耐磨,并且耐腐蚀性能要好。
辉光离子渗氮法是把零件置于真空反应炉内,用真空泵把炉内抽线的混合气体,把炉内压力调整到100—1000Pa,以炉体接阳极,工件接阴极,在两极间通数百伏的直流电时产生辉光放电,这时所产生的氮离子就会高速向工件表面运动。而处在阴极的工件被冲击出铁原子,与氮离子结合成FeN,随即被工件表面吸附,在离子轰击作用下,逐步分解为低价氮化物和氮原子,氮原子就向内部渗入及扩散。辉光离子渗氮的时间与普通渗氮相比要短的多,普通渗氮要几十
近年来,金属表面处理技术获得了迅速发展,已广泛应用于众多领域。随着金属加工业、铁路制造业、汽车行业的快速的提升,对生产各种金属制作的产品及铁路、汽车零部件产品的质量有了更加高的要求,通过长期的实践证明,一些简单、简易的解决方法,已经不能够满足使用环境的基础要求。只有采用标准的处理生产的基本工艺,才能使生产的产品满足质量发展要求。因此,选用低成本、低能耗、高品质的金属处理工艺,是企业保证防护质量和产品质量稳定与否的重要因素。
镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。依各种电镀需求还有不同的作用。举例如下:1.镀铜:打底用,增进电镀层附着能力,及抗蚀能力。2.镀镍:打底用或做外观,增进抗蚀能力及耐磨能力,(其中化学镍为现代工艺中耐磨能力超过镀铬)。3.镀金:改善导电接触阻抗,增进信号传输。4.镀钯镍:改善导电接触阻抗,增进信号传输,耐磨性高于金。
5.镀锡铅:增进焊接能力,快被其他替物取代(因含铅现大部分改为镀亮锡及雾锡)。
铬是一种微带天蓝色的银白色金属。它有很强的钝化性能,大气中很快钝化,显示出具有贵金属的性质,所以铁零件镀铬层是阴极镀层。铬层在大气中很稳定,能长期保持其光泽,在碱、硝酸、硫化物、碳酸盐以及有机酸等腐蚀介质中很稳定,但可溶于盐酸等氢卤酸和热的浓硫酸中。
铬层硬度高,耐磨性好,反光能力强,有较好的耐热性。在500OC 以下光泽和硬度均无明显变化;温度大于500OC开始氧化变色;大于
镀铜层呈粉红色,质柔软,拥有非常良好的延展性、导电性和导热性,易于抛光,经过适当的化学处理可得古铜色、铜绿色、黑色和本色等装饰色彩。镀铜易在空气中失去光泽,与二氧化碳或氯化物作用,表面生成一层碱式碳酸铜或氯化铜膜层,受到硫化物的作用会生成棕色或黑色硫化铜,因此,作为装饰性的镀铜层需在表面涂覆有机覆盖层。
镉是银白色有光泽的软质金属,其硬度比锡硬,比锌软,可塑性好,易于锻造和辗压。镉的化学性质与锌相似,但不溶解于碱液中,溶于硝酸和硝酸铵中,在稀硫酸和稀盐酸中溶解很慢。镉的蒸气和可溶性镉盐都有毒,必须严格防止镉的污染。因为镉污染后的危害很大,价格昂贵,所以一般会用镀锌层或合金镀层来取代镀镉层。目前国内生产中应用较多的镀镉溶液类型有:氨羧络合物镀镉、酸性硫酸盐镀镉和氰化物镀镉。除此以外还有焦磷酸盐镀镉、碱性三乙醇胺镀镉和HEDP镀镉等。
锡是一种银白色的金属,无毒,拥有非常良好的焊接和延展性等,大范围的应用电子、食品、汽车等工业。电镀锡溶液主要有碱性和酸性两大类,酸性体系中又分硫酸盐、甲基磺酸体系及氟硼酸体系镀锡等。实际生产中应用较多的是硫酸盐、甲基磺酸体系的酸性光亮镀锡工艺。下面介绍生产线上采用的硫酸盐镀锡。
镀锡具有下列特点和用途:(1)化学稳定性高,在空气中耐氧化,不易变色。(2)一般条件下,镀锡层对钢铁来说是阴极性镀层,因此只有在镀层无孔隙时才能够有效的保护钢铁基体;但在密闭条件下的有机酸介质中(例如罐头内部),锡是阳极性镀层,即使有孔隙仍具有电化学保护作用,而且溶解的锡对人体无害,故常作食品容器的保护层。(3)锡导电性好,易钎焊,所以常用以电子元器件引线、印刷电路板及低压器件的电镀。
锌易溶于酸,也能溶于碱,故称它为两性金属。锌在干燥的空气中几乎不发生明显的变化。在潮湿的空气中,锌表面会生成碱式碳酸锌膜。在含二氧化硫、硫化氢以及海洋性气氛中,锌的耐蚀性较差,尤其在
锌的标准电极电位为-0.76V,对钢铁基体来说,锌镀层属于阳极性镀层,它大多数都用在防止钢铁的腐蚀,其防护性能的优劣与镀层厚度关系甚大。
锌镀层经钝化处理、染色或涂覆护光剂后,能明显提高其防护性和装饰性。近年来,随着镀锌工艺的发展,高性能镀锌光亮剂的采用,镀锌已从单纯的防护目的进入防护-装饰性应用。
镀锌溶液有氰化物镀液和无氰镀液两类。氰化物镀液中分微氰、低氰、中氰、和高氰几类。无氰镀液有碱性锌酸盐镀液、铵盐镀液、硫酸盐镀液及无氨氯化物镀液等。氰化镀锌溶液均镀能力好,得到的镀层光滑细致,在生产中被长期采用。但由于氰化物剧毒,对环境污染严重,近年来已趋向于采用低氰、微氰、无氰镀锌溶液。
电镀单金属方面还有镀铅、镀铁、镀银、镀金等。电镀合金方面有:电镀铜基合金,电镀锌基合金,电镀镉基、铟基合金,电镀铅基、锡基合金,电镀镍基、钴基合金、电镀钯镍合金等。复合电镀方面有:镍基复合电镀,锌基复合电镀,银基复合电镀,金刚石镶嵌复合电镀。
积于工件表面。它包括四个过程: 1.电解(分解)在阴极反应最初为电解反应,生成氢气及氢氧根离子OH-,此反应造成阴极面形成一高碱性边界层,当阳离子与氢氧根作用成为不溶于
电泳漆膜具有涂层丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、耐腐、冲击性能、渗透性能明显优于其它涂装工艺。
钢的氧化处理钢的氧化处理是将钢件在空气—水蒸气或化学药物中加热到适当温度,使其表明产生一层蓝色(或黑色)的氧化膜,以改善钢的耐蚀性和外观,这种工艺称为氧化处理,又叫发蓝处理。氧化膜是一层致密而牢固的Fe3O4薄膜,只有0.5~1.5mm厚,对钢件的尺寸精度无影响。氧化处理后的钢件还要进行肥皂液浸渍处理和浸油处理,以提高氧化膜的防腐蚀能力和润滑性能。
金属表面着色,顾名思义就是给金属表面“涂”上颜色,改变其单一的、冰冷的金属色泽,代之以五颜六色,满足多种行业的不同需求。
给金属着色后一般都增加了防腐能力,有的还增加了抗磨能力。但表面彩色技术主要的应用还在装饰领域,即用来美化生活,美化社会。
钝化是使金属表面转化为不易被氧化的状态,而延缓金属的腐蚀速度的方法。另外,一种活性金属或合金,其中化学活性大大降低,而成为贵金属状态的现象,也叫钝化。
其钝化的机理可用薄膜理论来解释,即认为钝化是由于金属与氧化性质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、牢固地吸附在金属表面上的钝化膜。这层膜成独立相存在,通常是氧化金属的化合物。它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质接触,从而使金属基本停止溶解形成钝态达到防腐蚀的作用。如Fe→Fe++时标准电位为-0.44V,钝化后跃变到+0.5~1V,而显示出耐腐蚀的贵金属性能,这层薄膜就叫钝化膜。
金属的钝化也可能是自发的过程(如在金属的表面生成一层难溶解的化合物,即氧化物膜)。在工业上是用钝化剂(主要是氧化剂)对金属进行钝化处理,形成一层保护膜。
1、与传统的物理封闭法相比,钝化处理后具有绝对不增加工件厚度和改变颜色的特点、提高了产品的精密度和附加值,使操作更方便;
3、钝化促使金属表面形成的氧分子结构钝化膜、膜层致密、性能稳定,并且在空气中同时具有自行修复作用,因此与传统的涂防锈油的方法相比,钝化形成的钝化膜更稳定、更具耐蚀性。
工件经表面处理后,针对不同工件对外观和耐腐蚀的要求,选用合适的喷涂工艺及设备,同时应注意流平、干燥、冷却等工序的控制,否则会对产品质量产生不良影响。三种工艺各有利弊,在设备投资方面
电泳设备一次性投资大,而且关键设备主要依赖于进口;喷粉设备一次性投资最少,但由于粉末烘烧温度高,所以设备(能耗)运行费用高。
一般情况下,喷漆工艺能获得较好的外观质量。喷漆涂层具有较好的光泽、色泽及耐候性,通常用于汽车外涂层、摩托车油箱等外观要求较高的场合。对于防腐要求较高的场合,如摩托车车架、放在厨房中的冰箱等一般采用喷粉工艺。电泳工艺一般运用于耐盐雾试验、耐冲击性等要求比较高的场合并且充当底漆的作用。当然像汽车雨刮器、高档门锁等只需一道电泳漆就能满足要求。有时对一种产品三种工艺都能适用,这由各方面的综合因素而定。
粉末静电喷涂,利用高压静电发生器发出的高压直流电,接至喷枪尖,而工件通过输送链接地,当工件进入喷粉房和喷枪尖端接近时,就产生电晕放电现象,喷枪和 工件之间形成一个电场,粉末和压缩空气的混合物从喷枪口喷射出来,经过电晕放电就带上了负电荷,带负电荷的粉末微粒在静电力和压缩气流的作用下到达工件表 面,在粉末微粒的其它部分的负电荷与工件之间具有静电吸引力,使粉末微粒均匀地吸附在工件表面上,一般粉末微粒的比电阻在102-103Ω为宜,带电量一般在Q=107库∕克的程度上,喷涂操作时使用的电压一般为50-80KV,放电量为100μA以下,喷枪尖端与工件的距离10-20㎝为宜。冷喷时,工件涂层厚度一般为50-100微米,热喷时,涂膜厚度可达500微米。在工件凹陷处,需降低电压进行喷涂。
烤漆分为两大类,一类低温烤漆固化温度为140°-180°,另外一类就称为高温烤漆,其固化温度为280°-400°。
喷漆时,外部空气经过初级过滤网过滤后由风机送到房顶,再经过顶部过滤网二次过滤净化后进入房内。房内空气采用全降式,以0.2-0.3m/s的速度向下流动,使喷漆后的漆雾微粒不能在空气中停留,而直接通过底部出风口被排出房外。这样不断地循环转换,使喷漆时房内空气清洁度达98%以上,且送入的空气具有一定的压力,可在车的四周形成一恒定的气流以去除过量的油漆,从而最大限度地保证喷漆的质量。
烤漆时,将风门调至烤漆位置,热风循环,烤房内温度迅速升高到预定干燥温度(55℃—60℃)。风机将外部新鲜空气进行初过滤后,与热能转换器发生热交换后送至烤漆房顶部的气室,再经过第二次过滤净化,热风经过风门的内循环作用,除吸进少量新鲜空气外,绝大部分热空气又被继续加热利用,使得烤漆房内温度逐步升高。当温度达到设定的温度时,燃烧器自动停止;当温度下降到设置温度时,风机和燃烧器又自动开启,使烤漆房内温度保持相对恒定。最后当烤漆时间达到设定的时间时,烤漆房自动关机,烤漆结束。
高温烤漆又名特氟龙(telon)英文全称为Polytetrafluoroetylene,简称Teflon、PTFE、F4等。特氟龙高性能特种涂料是以聚四氟乙烯为基体树脂的氟涂料,英文名称为Teflon,因为发音的缘故,通常又被称 之为铁氟龙、铁富龙、特富龙、特氟隆等等(皆为Teflon 的译音)。特氟龙(铁氟龙)涂料是一种独一无二的高性能涂料,结合了耐热性、化学惰性和优异的绝缘稳定性及低摩擦性,具有其他涂料无法抗衡的综合优势,它应用的灵活性使得它能用于几乎所有形状和大小的产品上。
1、不粘性:几乎所有物质都不与特氟龙涂膜粘合。很薄的膜也显示出很好的不粘附性能。
2、耐热性:特氟龙涂膜具有优良的耐热和耐低温特性。短时间可耐高温到300℃,一般在240℃~260℃之间可连续使用,具有显著的热稳定性,它可以在冷冻温度下工作而不脆化,在高温下不融化。
3、滑动性:特氟龙涂膜有较低的摩擦系数。负载滑动时摩擦系数产生变化,但数值仅在0.05-0.15之间。
4、抗湿性:特氟龙涂膜表面不沾水和油质,生产操作时也不易沾溶液,如粘有少量污垢,简单擦拭即可清除。停机时间短,节省工时并能提高工作效率。
5、耐磨损性:在高负载下,具有优良的耐磨性能。在一定的负载下,具备耐磨损和不粘附的双重优点。
6、耐腐蚀性:特氟龙几乎不受药品侵蚀,可以保护零件免于遭受任何种类的化学腐蚀。2.8磷化
磷化(phosphorization)是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。磷化所形成的磷化膜是一层稳定的不导电的隔离层,使金属表面由优良导体变为不良导体,抑制了微电池形成,有效地阻止涂层腐蚀。磷化常用的方法按处理温度分为高温磷化(70~90℃ ),中温磷化(50~70℃ )和常温磷化(20~30℃ )。磷化膜一般是黑色的。
①防护用磷化膜用于钢铁件耐蚀防护处理。磷化膜类型可用锌系、锰系。膜单位面积质量为10-40 g/m2。磷化后涂防锈油、防锈脂、防锈蜡等。
增加漆膜与钢铁工件附着力及防护性。磷化膜类型可用锌系或锌钙系。磷化膜单位面积质量为0.2-1.0 g/m2(用于较大形变钢铁件油漆底层);1-5 g/m2(用于一般钢铁件油漆底层);5-10 g/m2(用于不发生形变钢铁件油漆底层)。
钢丝、焊接钢管拉拔单位面积上膜重1-10 g/m2;精密钢管拉拔单位面积上膜重4-10 g/m2;钢铁件冷挤压成型单位面积上膜重大于10 g/m2。
磷化膜可起减摩作用。一般用锰系磷化,也可用锌系磷化。对于有较小动配合间隙工件,磷化膜质量为1-3 g/m2;对有较大动配合间隙工件(减速箱齿轮),磷化膜质量为5-20 g/m2。
所谓表面硬化法是指通过适当的方法使零件的表层硬化而零件的心部仍然具有强韧性的处理。通过这种处理,可以改善零件的耐磨性以及耐疲劳性,而由于零件的心部仍然具有良好的韧性和强度,因此对冲击载荷有良好的抵抗作用。常用的表面硬化处理方法主要有渗碳、氮化、硬质阳极氧化、表面淬火以及渗金属等。
钢的渗碳就是含碳量较低的钢制零件在渗碳介质中加热或者保温,使碳原子渗入表面,获得一定的表面含碳量,在淬火之后,含碳量高的表层硬度很高,而含碳量低的心部硬度低仍具有良好的韧性。目的是使零件获得高的表面硬度、耐磨性以及高的接触疲劳强度和弯曲疲劳强度。主要用于承受磨损、交变接触应力或者弯曲应力和冲击载荷的零件,如轴、齿轮、凸轮轴等,这些零件要求表面有很高的硬度而心部要有足够的强度和韧性。
氮化是指把合金钢(一般含有Al、Cr、Mo)在无水氨气(NH3)流中在500℃—570℃左右长时间加热,使钢的表面形成一层硬度很高又耐腐蚀的氮化物(主要为Fe2N、Fe3N、Fe4N)。一般有气体渗氮、液体渗氮和辉光离子渗氮。
铝的阳极氧化是以铝或铝合金作阳极,以铅板作阴极在电解液中电解,使其表面生成氧化膜层。经过阳极氧化,铝表面能生成厚度为几个至几百微米的氧化膜。这层氧化膜的表面是多孔蜂窝状的,比起铝合金的天然氧化膜,其耐蚀性、耐磨性和装饰性都有明显的改善和提高。
表面淬火是指将工件表面一定深度范围内迅速加热到淬火温度,然后迅速冷却,在一定深度范围内达到淬火目的的热处理工艺。目的是在工件表面一定深度范围内获得马氏体组织,而心部仍保持淬火前的组织状态(调质或者正火状态),从而使表面硬而耐磨,而心部又有足够的塑性和韧性。主要用于中碳调质钢和球墨铸铁制的机器零件。
电镀时,镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。
在盛有电镀液的镀槽中,经过清理和特殊预处理的待镀件作为阴极,用镀覆金属制成阳极,两极分别与直流电源的负极和正极联接。电镀液由含有镀覆金属的化合物、导电的盐类、缓冲剂、pH调节剂和添加剂等的水溶液组成。通电后,电镀液中的金属离子,在电位差的作用下移动到阴极上形成镀层。阳极的金属形成金属离子进入电镀液,以保持被镀覆的金属离子的浓度。在有些情况下,如镀铬,是采用铅、铅锑合金制成的不溶性阳极,它只起传递电子、导通电流的作用。电解液中的铬离子浓度,需依靠定期地向镀液中加入铬化合物来维持。电镀时,阳极材料的质量、电镀液的成分、温度、电流密度、通电时间、搅拌强度、析出的杂质、电源波形等都会影响镀层的质量,需要适时进行控制。
除蜡 → 热浸除油 → 阴极 → 阳极 → 电解除油 → 弱酸浸蚀 → 预镀碱铜 → 酸性光亮铜(选择)→ 光亮镍 → 镀铬或其它
除蜡 → 热浸除油 → 阴极 → 阳极 → 电解除油 → 弱酸浸蚀 → 半光亮镍 → 高硫镍 → 光亮镍 → 镍封(选择)→ 镀铬
除蜡 → 热浸除油 → 阴极电解除油 → 浸酸 → 碱性光亮铜 → 焦磷酸铜(选择性)→ 酸性光亮铜(选择性)→ 光亮镍 →镀铬
1) 电化学除油→热水洗→冷水洗→浸酸活化(1ml/L HCL、10ml/L H2SO4,室温,半分钟;适用于自动线上不锈钢镀铬,不宜镀铜或镍)→水洗→镀铬。
3) 化学除油→清洗→阳极电化学除油(0.5A/dm2)→清洗→浸酸活化(1ml/L HCL、10ml/L H2SO4,室温,45S)→清洗→镀铬注:镀铬时,应先用是正常电镀时电流密度的1.5~2倍镀3~5分钟,然后再正常电流密度电镀,要尽量缩短各工序之间的过渡引起的停留时
化学镀铜(Eletcroless Plating Copper)通常也叫沉铜或孔化(PTH)是一种自身催化性氧化还原反应。首先用活化剂处理,使绝缘基材表面吸附上一层活性的粒子通常用的是金属钯粒子(钯是一种十分昂贵的金属,价格高且一直在上升,为降低成本现在国外有实用胶体铜工艺在运行),铜离子首先在这些活性的金属钯粒子上被还原,而这些被还原的金属铜晶核本身又成为铜离子的催化层,使铜的还原反应继续在这些新的铜晶核表面上进行。化学镀铜在PCB制造业中得到了广泛的应用,目前最多的是用化学镀铜进行PCB的孔金属化。PCB孔金属化工艺流程如下:
钻孔→磨板去毛刺→上板→整孔清洁处理→双水洗→微蚀化学粗化→双水洗→预浸处理→胶体钯活化处理→双水洗→解胶处理(加速)→双水洗→沉铜→双水洗→下板→上板→浸酸→一次铜→水洗→下板→烘干
检验——除油——水洗——酸洗——水洗——滚光——水洗——镀铜——水洗——镀锡——水洗——钝化——水洗 ——甩干——检验
1、控制好镀液工作条件,勤观察,注意温度变化,液位变化。仔细操作,如实填写操作记录。根据化验结果补加药水,校正电镀液。
热浸镀锌是由古老的热浸镀锡发展而来的一种应用最广泛和最有效的金属防锈方法,自应用于工业生产以来已有近170年的发展历史,是一种防止钢铁大气腐蚀的有效方法。由于热镀锌产品具有良好的耐蚀能力、美好的外观、有利于后续加工、可降低成本和减少环境污染等优点,因而深受广大用户的欢迎。
热浸镀锌是将被镀金属(基体)材料经预处理后,浸入液态金属锌中,从而在金属表面镀覆上一层薄薄的具有防护性的锌镀层,以达到提高材料抗腐蚀能力、改善材料性能的一种工艺方法。此工艺特点是基体金属与镀层金属间形成冶金结合的合金层。被镀金属一般为普碳钢、合金钢和铸铁。此外,用于热镀的低熔点金属还有铝、铅、锡等有色金属及其合金。
一般认为,热浸镀锌镀层是按下列步骤形成的:首先,固体铁溶解在熔融锌中;其次,铁和锌形成铁-锌化合物;最后,在铁-锌合金层表面生成纯锌层。
该过程中的物理化学反应可以分为以下几个阶段:①锌原子通过钢铁表面扩散到钢铁材料的亚表面,形成锌铁固溶体;②以此固溶体为界,铁原子和锌原子进行反方向的扩散,锌原子继续向钢铁内表面扩散,使固溶体层增厚,同时固溶体中的铁原子溶解于工件表面吸附在熔锌中,铁和锌生成Fe-Zn合金层;③当工件从锌锅中提出时,锅中的纯锌熔融体粘附在Fe-Zn合金层表面,冷却后形成纯锌结晶层。
预镀件--脱脂--水洗--酸洗--水洗--挤干--涂水溶剂--烘干--镀锌--冷却--矫直--涂油--打包。
由Zn—Fe状态图可以看出,当镀锌温度在450~670℃范围内时,所产生的相层,由铁开始其顺序为:a固溶体,a+r的共晶混合物,r 相,r+δ1的包晶混合物,δ1相,δ1相+ξ相的包晶混合物,ξ相和η相。
在热镀锌生产过程中,实际获得的镀层不一定完全含有上述8种相层。研究结果表明,当镀件在锌液中浸没时间很短时,根本不会形成a固溶体,而a+r共晶、r+δ1包晶和δ1+ξ包晶分别在623℃、672℃和530℃时才能形成。所以,镀锌温度在450~470℃范围时,不会形成上述4种相层,只可能形成r相、δ1相、ξ相及η相等4种相层。当浸锌时间极短,如5s左右时,r相也不会形成,η相几乎由纯锌组成,所以此相又被称为纯锌层。此时,铁锌合金层中就只存在δ1相和ξ相。
以电化学方法使金属离子还原为金属的过程称为金属电沉积。如果在电沉积过程中,能在金属和非金属制品表面形成符合要求的平滑致密的金属覆盖层,则称为电镀。
锌的电沉积是指在直流电流作用下,电解液中的锌离子还原并沉积在工件表面上形成锌镀层的过程。电镀时,溶液中的锌离子在阴极
还原形成镀层,同时,阳极进行氧化反应,金属锌变成锌离子。镀层金属从离子态到结晶态需经过以下几个步骤。
锌离子在阴极还原时消耗的是阴极附近的离子,溶液中的锌离子通过电迁移、扩散和对流等形式进行补充,以保持溶液中锌离子的均衡。
在还原前,迁移到电极/溶液界面双电层处的锌离子在还原反应前首先发生均相前置反应,如单位溶液中金属离子水化程度的降低和重排,铬盐溶液中铬离子的配体发生交换或配位数下降。
这是金属离子得到电子的还原过程,但电荷转移不是一步完成的,必须经过中间活性离子状态。这种活性离子通常被称为吸附原子,是保留着部分水化分子和部分电荷的粒子。随后吸附原子失去剩余的水化分子并进入金属晶格,完成电荷转移的全过程。
吸附原子通过表面扩散到达生长点进入晶格生长,或通过吸附原子形成晶核长大成晶体。
电镀锌的基本工艺流程如下:预镀件一除油一侵蚀一抛光一镀锌一除氢一钝化/染色。
电镀锌可以形成均匀、致密的镀锌层,镀层的质量均匀性比热镀锌好,但镀层没有热镀锌镀层厚,所以耐蚀性也不如热镀锌制品。 尽管电镀锌应用广泛,特别是常规零部件的电镀锌防腐,但是电镀锌的局限性也显而易见。首先是“三废”的处理问题。由于电镀过程会产生大量的废水、废气和废渣,其中含有重金属铬、氢氰根等剧毒物质,会对环境造成严重威胁。目前,对电镀企业,环保是一道很难逾越的关卡。另外,氢脆问题也不可小视。工件在侵蚀、阴极电解除油和电解过程中都可能在镀层和基体金属的晶格中渗氢,而氢的渗入往往将造成材料脆性增加,从而导致在某些条件下发生突然断裂。
工件前处理(除油→热水洗→除锈→冷水洗→磷化→热水洗→钝化)→阳极电泳→工件后处理(清水洗→烘干)。
1、除油。溶液一般为热碱性化学除油液,温度为60℃(蒸汽加热),时间为20min左右。
7、阳极电泳。电解液成分:H08-1黑色电泳漆,固体分质量分数9%~12%,蒸馏水质量分数88%~91%。电压:(70±10)V;时间:2~2.5min;漆液温度:15~35℃;漆液PH 值:8~8.5。注意工件出入槽要断电。电泳过程中电流随漆膜增厚会逐步下降。
氧化处理过程中溶液中的氧化剂含量越高,生成氧化膜速度也越快,而且膜层致密、牢固。溶液中碱的浓度适当增大,获得氧化膜的厚度增大,碱含量过低,氧化膜薄而脆弱。溶液的温度适当升高,可以提高氧化致密度。工件含碳量越高,越容易氧化,氧化时间越短。氧化处理时间主要根据钢件的含碳量和工件氧化要求来调整。氧化处理工艺不影响零件的精度,常用于仪器、仪表、工具、枪械及某些机械零件的表面,使其达到耐磨、耐蚀以及防护与装饰的目的。
金属表面着色,顾名思义就是给金属表面“涂”上颜色,改变其单一的、冰冷的金属色泽,代之以五颜六色,满足不一样的行业的不同需求。
给金属着色后一般都增加了防腐能力,有的还增加了抗磨能力。但表面彩色技术主要的应用还在装饰领域,即用来美化生活,美化社会。
用铬酸盐溶液与金属作用在其表面生成三价或六价铬化层的过程,称为钝化,亦名铬化。多用于铝、镁及其合金的处理,对钢铁也能形成铬化层,但很少单独使用,常和磷化配套使用,以封闭磷化层的孔隙,使磷化层中的钢铁钝化,以抑制残余磷化加速剂的腐蚀
作用,进一步增加防护能力。钝化时一般用重铬酸钾溶液(2~4克/升,有时也加入1~2克磷酸),在80-90摄氏度浸啧2-3分钟取出,水洗即可 。
不锈钢工件经切削加工后表面上通常会残留铁屑、钢末及冷却乳液等污物,会使不锈钢表面出现污斑与生锈,因此应进行脱脂除油,再用硝酸清洗,既去除了铁屑钢末,又进行了钝化。
由于油脂是氢的来源,在没有清除油脂的焊缝中会形成气孔,而低熔点金属污染(如富锌漆)焊接后会造成开裂,所以不锈钢焊前必须将坡口及两侧20mm内的表面清理干净,油污可用丙酮擦洗,油漆锈迹应先用砂布或不锈钢丝刷清除,再用丙酮擦净。
不锈钢设备制造无论采用何种焊接技术,焊后均要清洗,所有焊渣、飞溅物、污点与氧化色等均要除掉,清除方法包括机械清洗与化学清洗。机械清洗有打磨、抛光与喷砂喷丸等,应避免使用碳钢刷子,以防表面生锈。为取得最好的抗腐蚀性能,可将其浸泡在HNO3和HF的混液中,或采用酸洗钝化膏。实际上常4锎1械清洗与化学清洗结合起来应用。
经锻铸等热加工后的不锈钢工件,表面往往有一层氧化皮、润滑剂或氧化物污染,污染物包括石墨、二硫化钼与二氧化碳等。应通过喷丸处理、盐浴处理以及多道酸洗处理。如美国不锈钢涡轮机叶片处理工艺为:
许多大型化工、化纤、化肥等装置的不锈钢设备与管道在投产开工前要求进行酸洗钝化。虽然设备在制造厂已进行过酸洗,去除了焊渣与氧化皮,但在存放、运输、安装过程中又难免造成油脂、泥砂、铁锈等的污染,为确保装置与设备试车产品(尤其是化工中间体及精制品)的质量能够达到要求,保证一次试车成功,必须进行酸洗钝化。如H2O2生产装置不锈钢设备与管道,投产前必须进行清洗,否则若有污物重金属离子会使催化剂中毒。另外,如金属表面有油脂与游离铁离子等会造成H2O2的分解,剧烈放出大量热,引发着火,甚至爆炸。同样对氧气管道来说存在微量油污与金属微粒也可能产生火花而发生严重后果。
打磨→擦拭→静电除尘→喷底漆→底漆流平→烘干→喷色漆→色漆流平→喷清漆→清漆流平→烘干→冷却
静电除尘原理:通过静电发生器,使空气离子化消除工件上的电荷,从而导致附着在工件上的灰尘处于漂浮状态,在利用流动的空气带走灰尘,而起到了静电除尘的 作用。静电除尘枪在正常工作状态下,会发出呈蓝紫色放射状火焰,工作前,须检验静电发生器的接地状况。
擦拭:作业人员使用带有化学药品的擦拭布,带走工件上的油污或油脂。化学药品具有局限性,根据工件的不同材质和存有的油脂,选择但方向擦拭。在一些车体涂装线中,常使用自动擦拭装置,如鸵鸟毛擦拭机。
喷漆:使用的油漆通过输漆系统,送往油漆喷枪,被压至枪头,当枪针回缩时,油漆自枪眼中流出,在压缩空气的吹动作用下,呈雾状喷至工件表面,形成漆膜。喷 枪离工件表面的距离,对漆膜的质量有着明显的影响,当距离过近时,油漆雾化效果差,色差严重,易出现堆积;当距离过远时,漆膜易发毛发花,甚至会产生颗 粒。雾化压力不当,也会影响漆膜质量。
烘烤:利用热空气或辐射热源,对工件表面的漆膜进行烘烤,加快漆膜中的溶剂挥发,或加快漆膜中树脂组分间的反应,使油漆膜干燥固化。对于不同材质的工件, 烘烤的温度有所不同,如工程塑料工件的烘烤温度一般为60-80℃,钢铁工件的烘烤温度为150℃左右,PVC涂胶的烘烤温度为120℃左右。温度过高, 不仅会引起非金属工件的变形,对漆膜的质量也会产生不良影响。工件表面的漆膜需要一定的烘烤时间,方能完全固化,但是,时间过长,则会降低漆膜表面的硬 度,增加脆性,或引起漆膜发黄。
前处理:工艺同喷漆工艺中的前处理,工件需要充分冷却到35℃以下才能保证喷粉后工件的理化性能和外观品质。
喷涂:粉末涂料先加入到新粉桶,压缩空气通过新粉桶底部的流化板上的微孔使粉末预流化,再经过粉泵输送到旋转筛。旋转筛分离出粒径过大的粉末粒子 (100μm以上),剩余粉末下落到供粉桶。供粉桶将粉末流化到规定程度后通过粉泵和送粉管供给喷枪喷涂工件。喷枪喷出的粉末除一部分吸附到工件表面上 (一般为50%~70%)外,其余部分自然沉降。沉降过程中的粉末一部分被喷粉棚侧壁的旋风回收器收集,
利用离心分离原理使粒径较大的粉末粒子(12μm 以上)分离出来并送回旋转筛重新利用。12μm以下的粉末粒子被送到滤芯回收器收集斗内,这部分粉末定期清理装箱。沉降到喷粉棚底部的粉末收集后通过粉泵进入旋转筛重新利用。一般地,总体粉末利用率平均达到95%。
烘烤固化:固化过程是环氧树脂中的环氧基、聚酯树脂中的羧基与固化剂中的胺基发生缩聚、加成反应交联成大分子网状体,同时释放出小分子气体(副产物)。分为熔融、流平、胶化和固化4个阶段。一般地,采用的粉末固化工艺为180℃,烘15min,属正常固化。
涂装前处理与涂布、干燥为涂装工艺三大主要工序,其中涂装前处理是基础工序,它对整个涂层质量、涂层使用寿命、涂层外观等均有着重要影响
主要有矿物油、润滑脂、动、植物油脂,比如操作与搬运过程中用手摸等油脂使绝大多数涂料的附着力严重下降,并影响它们的干燥,也使涂层的硬度和光泽度降低。
以碱溶液除去工件上之油污,主要的碱为NaOH,NaHCO3等等混合而成;可以买到专门的脱脂粉,然后配制成水溶液;肥皂的皂化作用;
以清水漂洗,以免前一工序中的溶液污染到下一工序。清水必须是活的(流动的)。
黄锈能促进腐蚀产物在涂层下蔓延,使涂层失去屏蔽性和不透湿性。在高温高湿条件下能导致涂层和金属的早期损坏,松散的黄锈,附着力差,能与涂层一起脱落。
除锈的方法很多,如碱液法,酸液法,机械法,电解法等,常见的是碱液法。以化学溶液除去工件表面的氧化皮,锈迹等,一般是用硫酸,也有用草酸。还可辅以超声波清洗。
表面调整的简称:以酸(或碱)溶液除去除锈工序中表面多余的碱(或酸),调整酸碱度尽可能到中性,即PH值=7;
磷化是涂装前处理的中心环节,用磷酸式锰、锌、镉的正磷酸盐溶液处理金属工件,使在工件表面上形成一层不溶性磷酸盐保护膜,所形成的磷化膜系具有细微小孔的致密结构,增大了工件表面积,可以增大涂层接触面积,使磷化膜与涂层之间产生有利的相互渗透,大大提高有机涂层对工件的附着力 。
以上前处理过程基本都是在水槽中进行的。并且每一工序有时间的规定。烘干水分,准备涂漆;
磷化工艺的早期应用是防锈,钢铁件经磷化处理形成一层磷化膜,起到防锈作用。经过磷化防锈处理的工件防锈期可达几个月甚至几年(对涂油工件而言),广泛用于工序间、运输、包装贮存及使用过程中的防锈,防锈磷化主要有铁系磷化、锌系磷化、锰系磷化三大品种。
铁系磷化的主体槽液成分是磷酸亚铁溶液,不含氧化类促进剂,并且有高游离酸度。这种铁系磷化处理温度高于95℃,处理时间长达
30min以上,磷化膜重大于10g/m2,并且有除锈和磷化双重功能。这种高温铁系磷化由于磷化速度太慢,现在应用很少。
锰系磷化用作防锈磷化具有最佳性能,磷化膜微观结构呈颗粒密堆集状,是应用最为广泛的防锈磷化。加与不加促进剂均可,如果加入硝酸盐或硝基胍促进剂可加快磷化成膜速度。通常处理温度80~100℃,处理时间10~20min,膜重在7.5克/m2以上。
锌系磷化也是广泛应用的一种防锈磷化,通常采用硝酸盐作为促进剂,处理温度80~90℃,处理时间10~15min,磷化膜重大于
除油除锈——水清洗——表面调整活化——磷化——水清洗——铬酸盐处理——烘干——涂油脂或染色处理
通过强碱强酸处理过的工件会导致磷化膜粗化现象,采用表面调整活化可细化晶粒。锌系磷化可采用草酸、胶体钛表调。锰系磷化可采用不溶性磷酸锰悬浮液活化。铁系磷化一般不需要调整活化处理。磷化后的工件经铬酸盐封闭可大幅度提高防锈性,如再经过涂油或染色处理可将防锈性提高几位甚至几十倍。
对于发动机活塞环、齿轮、制冷压缩机一类工件,它不仅承受一次载荷,而且还有运动摩擦,要求工件能减摩、耐摩。锰系磷化膜具有
较高的硬度和热稳定性,能耐磨损,磷化膜具有较好的减摩润滑作用。因此,广泛应用于活塞环,轴承支座,压缩机等零部件。这类耐磨减摩磷化处理温度70~100℃,处理时间10~20min,磷化膜重大于7.5g/m2。
在冷加工行业如:接管、拉丝、挤压、深拉延等工序,要求磷化膜提供减摩润滑性能,一般都会采用锌系磷化,一是锌系磷化膜皂化后形成润滑性很好的硬脂酸锌层,二是锌系磷化操作温度比较低,可在40、60或90℃条件下进行磷化处理,磷化时间4~10min,有时甚至几十秒钟即可,磷化膜重量要求≥3g/m2便可。
耐磨减摩磷化减摩润滑磷化(冷加工)→除油除锈→水清洗→锰系磷化锌系磷化 →水清洗→干燥→皂化(硬脂酸钠)→涂润滑油脂干燥3. 漆前磷化工艺
涂装底漆前的磷化处理,将提高漆膜与基体金属的附着力,提高整个涂层系统的耐腐蚀能力;提供工序间保护以免形成二次生锈。因此漆前磷化的首要问题是磷化膜必须与底漆有优良的配套性,而磷化膜本身的防锈性是次要的,磷化膜细致密实、膜薄。当磷化膜粗厚时,会对漆膜的综合性能产生负效应。磷化体系与工艺的选定主要由:工件材质、油锈程度、几何形状;磷化与涂漆的时间间隔;底漆品种和施工方式以及相关场地设备条件决定。
一般来说,低碳钢较高碳钢容易进行磷化处理,磷化成膜性能好些。对于有锈(氧化皮)工件必须经过酸洗工序,而酸洗后的工件将给磷化带来很多麻烦,如工序间生锈泛黄,残留酸液的清除,磷化膜出现粗化等。酸洗后的工件在进行锌系、锌锰系磷化前一般要进行表面调整处理。
在间歇式的生产场合,由于受条件限制,磷化工件必须存放一段时间后才能涂漆,因此要求磷化膜本身具有较好的防锈性。如果存放期在10天以上,一般应采用中温磷化,如中温锌系、中温锌锰系、中温锌钙系等,磷化膜的厚度最好应在2.0 ~4.5g/m2之间。磷化后的工件应立即烘干,不宜自然凉干,以免在夹缝、焊接处形成锈蚀。如果存放期只有3~5天,可用低温锌系、轻铁系磷化,烘干效果会好于自然凉干。
Na2CO3等促进剂组成)中然后放入渗碳容器里加热到900℃—930℃保温一定时间。液体渗碳是把工件浸入以(NaCN)为主(含NaCl、
的熔融盐浴里,分解所生成的C和N渗入工件中。气体渗碳是把零件放入通有CH4和CO的容器里加热使碳原子渗入工件表面。
渗碳层的深度可以达到几个毫米,其深度随渗碳时间的增加而增加,随渗碳温度的升高而加深,但是渗碳速度随时间的延长而减慢。对不要渗碳的部位一般采用镀铜保护或者预留加工余量、渗碳后把该处切掉的方法进行防护。
渗碳后必须进行淬火和低温回火处理以得到零件所需要的硬度(可达HRC55—65),注重高硬度时在150℃左右回火,而为了保持零件的尺寸精度,防止时效变形时在180℃—200℃左右回火。
最后必须要提及一点是,我们经常提到的渗碳层深度是指淬火后的有效硬化层深度,国标GB9450—88上规定为从零件表面到维氏硬度值为550HV的距离,实际碳在零件中扩散达到的距离比这个要大得多。
氮化时合金钢的含碳量一般在0.2%—0.5%,主要由零件心部的机械性能来决定含碳量,含碳量高时阻碍N的扩散,从而减少氮化层的厚度,而含碳量少时,零件截面上的硬度梯度变化就会大,从而造成氮化层容易剥离。Al的作用是增加渗氮后钢的表面硬度,Cr可以增加氮化层的厚度,Mo可以防止在500℃—570℃长时间加热造成的回火脆性,Cr、Mo对材质的改良也很重要。历史最久国际上普遍采用的渗氮钢是
一般的氮化零件的工艺流程为锻造—退火—粗加工—调质—精加工—氮化。不需要氮化的部位可以镀Ni或者镀Sn或者镀Pb20%+Sn80%。
氮化处理前先对零件进行调质处理,使其拥有非常良好的塑性和韧性,氮化处理后不再实施淬火、回火,并且氮化处理本身的温度就比较低,所以工件的变形小。
氮化处理后工件表面的硬度可以达到HRC65—72,比渗碳处理后的硬度更高更耐磨,并且耐腐蚀性能要好。
辉光离子渗氮法是把零件置于真空反应炉内,用真空泵把炉内抽线的混合气体,把炉内压力调整到100—1000Pa,以炉体接阳极,工件接阴极,在两极间通数百伏的直流电时产生辉光放电,这时所产生的氮离子就会高速向工件表面运动。而处在阴极的工件被冲击出铁原子,与氮离子结合成FeN,随即被工件表面吸附,在离子轰击作用下,逐步分解为低价氮化物和氮原子,氮原子就向内部渗入及扩散。辉光离子渗氮的时间与普通渗氮相比要短的多,普通渗氮要几十
小九直播平台
电话:0769-81701660
手机:13802373315
传真:0769-81701661
邮箱:771619514@qq.com
网址:www.sh-qsbj.com
地址:东莞市石排镇田寮村四海工业园
扫一扫加微信咨询